Interfacial Cu/ZnO contact by selective photodeposition of copper onto the surface of small ZnO nanoparticles in non-aqueous colloidal solution.

نویسندگان

  • Mahmoud A Sliem
  • Todor Hikov
  • Zi-An Li
  • Marina Spasova
  • Michael Farle
  • Diedrich A Schmidt
  • Martina Havenith-Newen
  • Roland A Fischer
چکیده

Nanoscale copper was selectively photodeposited onto the surface of hexadecylamine (HDA) stabilized (monodispersed not agglomerated) ZnO nanoparticles (NPs) of a diameter of 2-5 nm, which leads to HDA-stabilized Cu/ZnO NPs of varied Cu loading. The particles are soluble in non-polar organic solvents. The line broadening and the red shift of the surface plasmon band of Cu/ZnO NPs relative to HDA-stabilized Cu NPs, the profound decrease of the Cu/ZnO NPs visible photoluminescence at 525 nm, the increase of the UV emission intensity at 365 nm and the enhancement of the Raman scattering (RS) intensity in comparison to the parent ZnO NPs confirmed the interfacial contact between the Cu and ZnO phase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Kinetic Study on Adsorption of Congo Red from Aqueous Solution by ZnO-ZnFe2O4-polypyrrole Magnetic Nanocomposite

In this work, magnetically separable ZnO-ZnFe2O4-PPy nanocomposite as an efficient adsorbent was synthesized by two steps. At first, zinc oxide (ZnO) and ZnFe2O4 nanoparticles were synthesized using simple and facile precipitation method. Then, ZnO-ZnFe2O4 mixed oxide was modified by polypyrrole (PPy). The adsorbent was character...

متن کامل

Facile synthesis and photocatalytic activity of bi-phase dispersible Cu-ZnO hybrid nanoparticles

Bi-phase dispersible Cu-ZnO hybrid nanoparticles were synthesized by one-pot non-aqueous nanoemulsion with the use of poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The transmission electron microscopy (TEM) and X-ray diffraction (XRD) show high crystallinity of the Cu-ZnO hybrid nanoparticles and an average particle size of ~19.4...

متن کامل

Application of experimental design approach for optimization of the photocatalytic degradation of humic substances in aqueous solution using immobilized ZnO nanoparticles

Degradation of humic substances in water is important due to its adverse effects on the environment and human health. The aim of this study was modeling and investigating the degradation of humic substances in water using immobilized ZnO as a catalyst. ZnO nanoparticles were synthesized through simple coprecipitation (CPT) method and immobilized on glass plates. The immobilized ZnO nanocatalyst...

متن کامل

Nanostructured Zinc Oxide Nanorods with Copper Nanoparticles as a Microreformation CatalystThis work was supported by the National Natural Science Council, Ministry of Education, Taiwan, and AOARD under AFSOR, US

The use of hydrogen for energy generation has attracted significant attention in recent years as a clean, sustainable, and transportable alternative fuel, and this interest has consequently sparked a rapid global development of hydrogen fuel cells for electric power generation. Catalytic reformation of hydrocarbons, with careful attention to avoid storage and safety issues, is currently the pre...

متن کامل

Adsorption of thallium (III) ion from aqueous solution using modified ZnO nanopowder

In this study, the adsorption of thallium (III) ion from aqueous solutions onto modified ZnOnanopowder as a fairly low cost adsorbent has been investigated in batch mode. It was found thatmodification of the adsorbent was essential for obtaining the significant adsorption percentage. Theadsorbent modified by sodium phosphate solution. The effect of experimental parameters such asinitial pH of s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 12 33  شماره 

صفحات  -

تاریخ انتشار 2010